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The Landau’s formula' which describes the energy loss of a particle traveling through the
medium was simplified by Tougaard and co-workers to a numerically tractable form®. They widely
applied the formula to XPS background subtraction using the ‘universal function’, which
approximates the loss function of noble metals. Its simplest version treats the situation that the
photoelectron source distribute exponentially from the topmost layer, which includes uniform

distribution as a special case.
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Very recently’, 1 found that the numerical solution of (1) can be directly obtained as a pair of a
realistic loss function and a realistic background by only making quite natural assumptions explained
below. In this comment, a brief overview of this method, together with some results and its potential
usages, will be given..

The assumptions for solving the problem comprises two independent requirements for an
ideal primary excitation spectrum (spectrum after background subtraction). First, if the
spectrometer’s transmission function is already calibrated, different core level peaks of the same
atomic species are expected to have a fixed intensity ratio, which is predicted by their photoelectron
excitation cross-sections. Second, far from the core level peak, observed intensity should be ascribed
entirely to the result of inelastic scattering, in other words the primary excitation spectrum should
show no signal outside the core level peak. These conditions are formulated to an optimization
problem of making the following two functions (strictly, functionals of unknown loss function) as
small as possible, by searching for the correct form of the loss function.
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K denotes the loss function. In eq.(2), i and j are the different core levels of the same atom, 4 the
observed peak intensity (peak area), Sa the effective cross-section. P[K] becomes zero (minimum)
only if different core level peaks give the same atomic density. In eq.(3), j(£) is the spectrum after
subtracting inelastic background. £ is the kinetic energy of detected electron. Integration is
performed outside the peak. O[K] becomes zero (minimum) only if no intensity is observed outside
the peak.

In order to find correct loss function, its initial form is, for convenience, set to the same as
that of Tougaard’s universal function with appropriate B and C. Then one modifies the function’s
shape slightly and observes the changes of P[K] and O[K]. This is done by Successive Quadratic
Programming method written by Fukushima®, which is capable of finding minimal solution of an
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arbitrary twice continuously differentiable function of many variables.

Fig.1 shows the Au spectrum5 thus analyzed. Optimization was performed so that the ratio
of 4d and 4f peak should show a given value, and area of the region indicated as TAIL in the figure
should be zero. Fig.2 is optimized loss function. It is very similar to that by Monte Carlo simulation®.
It is remarkable that the optimized solution indeed give a very good result not only in the
neighborhood of the peaks used, but also almost through the analyzed range. Furthermore, all peak
intensities, except valence band which is slightly smaller, are proportional to the excitation cross-
sections by Scofield. Taking into account that peaks other than 4d or 4f are not considered at all
during the calculation, it is very likely that above assumptions are indeed correct assumptions.

The meaning of the present method is at least eight-fold. (1) One can determine the loss
function of the unknown material without knowing the detail if one have an appropriate peak pair.
This is essentially a new spectroscopy. (2) One can obtain correct peak shape after background
subtraction. This is important in solid state physics. (3) Further, the present method extracts all the
part that is produced by inelastic scattering, which is described by eq.(1), the rest, which cannot be
explained by eq.(1), is therefore ascribed to the primary excitation spectrum. including main peak and
satellites.(4) One can check calculated excitation cross-section by examining the consistency of the
result. (5) One can measure the correct intensity ratio of peaks that is necessary for quantitative
analysis, if A is known or estimated. (6) One can check if the element is uniformly distributed or nor,
because eq.(1) strictly holds only if the distribution is uniform. (7) One can check if the compared
elements are in the same electronic environment or not, because the different environment would give
different loss function. (8) One can estimate the ratio of A if one measures the unknown sample by
calibrated spectrometer, because the peak intensities of the same element can be predicted as

discussed above,
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Fig.1 Background and primary excitation spectrum of Au. Fig.2 Loss function of Au (solid
line), universal function (dashed-
dotted line), Monte Carlo result by
Yoshikawa et al.
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